Monocular Vision Based Boundary Avoidance for Non-Invasive Stray Control System for Cattle: A Conceptual Approach
نویسندگان
چکیده
Building fences to manage the cattle grazing can be very expensive; cost inefficient. These do not provide dynamic control over the area in which the cattle are grazing. Existing virtual fencing techniques for the control of herds of cattle, based on polygon coordinate definition of boundaries is limited in the area of land mass coverage and dynamism. This work seeks to develop a more robust and an improved monocular vision based boundary avoidance for non-invasive stray control system for cattle, with a view to increase land mass coverage in virtual fencing techniques and dynamism. The monocular vision based depth estimation will be modeled using concept of global Fourier Transform (FT) and local Wavelet Transform (WT) of image structure of scenes (boundaries). The magnitude of the global Fourier Transform gives the dominant orientations and textual patterns of the image; while the local Wavelet Transform gives the dominant spectral features of the image and their spatial distribution. Each scene picture or image is defined by features v, which contain the set of global (FT) and local (WT) statistics of the image. Scenes or boundaries distances are given by estimating the depth D by means of the image features v. Sound cues of intensity equivalent to the magnitude of the depth D are applied to the animal ears as stimuli. This brings about the desired control as animals tend to move away from uncomfortable sounds.
منابع مشابه
Stochastically Optimized Monocular Vision-Based Guidance Design
This paper designs a relative navigation and guidance system for unmanned aerial vehicles for monocular vision-based control applications. Since 2-D vision-based measurement is nonlinear with respect to the 3-D relative state, an extended Kalman filter (EKF) is applied in the navigation system design. It is well-known that the vision-based estimation performance highly depends on the relative m...
متن کاملA Quasi Polar Local Occupancy Grid Approach for Vision-based Obstacle Avoidance
This paper proposes a quasi-polar local (turn rate-time) occupancy grid approach for obstacle avoidance. It uses GPS and inertial navigation combined with a vision system to map sensor data directly onto dynamically feasible paths, so that path planning consists simply of selecting the path with lowest likelihood of collision. A numerical method for motion updates that can cope with the differi...
متن کاملEstimation of PC-MRI Pressure Map Using Integral Form of Governing Equations and Spline Segments
In this paper, the boundary-based estimation of pressure distribution in the cardiovascular system is investigated using two dimensional flow images. The conventional methods of non-invasive estimation of pressure distribution in the cardiovascular flow domain use the differential form of governing equations. This study evaluates the advantages of using the integral form of the equations in the...
متن کاملEstimation of PC-MRI Pressure Map Using Integral Form of Governing Equations and Spline Segments
In this paper, the boundary-based estimation of pressure distribution in the cardiovascular system is investigated using two dimensional flow images. The conventional methods of non-invasive estimation of pressure distribution in the cardiovascular flow domain use the differential form of governing equations. This study evaluates the advantages of using the integral form of the equations in the...
متن کاملA Novel Ship-Bridge Collision Avoidance System Based on Monocular Computer Vision
The study aims to investigate the ship-bridge collision avoidance. A novel system for ship-bridge collision avoidance based on monocular computer vision is proposed in this study. In the new system, the moving ships are firstly captured by the video sequences. Then the detection and tracking of the moving objects have been done to identify the regions in the scene that correspond to the video s...
متن کامل